European Facility for Airborne Research in Environmental and Geo-sciences

European Facility for Airborne Research in Environmental and Geo-sciences



The European Facility for Airborne Research in Environmental and Geo-sciences (EUFAR) aims at providing researchers with Open Access to the airborne facilities the most suited to their needs. EUFAR thus allocates Transnational Access to 24 installations, develops a culture of co-operation between scientists and operators, and organizes training courses to attract young scientists to airborne research. To improve the quality of the service, EUFAR supports the experts on airborne measurements, constitutes a central data base and develops standards and protocols for this data base to be fully interoperable with Earth observation data bases. EUFAR supports two Joint Research Activities dedicated to (i) the development of methodologies and tools for the integrated use of airborne hyperspectral imaging data and airborne laser scanning data and (ii) the development of robust calibration systems for the core gas-phase chemical measurements currently made on-board research aircraft. To optimise the use and development of airborne research infrastructure, the EUFAR Strategy and European Integration will (i) constitute a Strategic Advisory Committee in which representatives of research institutions will define scientific priorities, jointly support Open Access with in kind contributions to the operation and the harmonized development of the European fleet and (ii) constitute the EUFAR sustainable legal structure. Following the Innovation Union objectives, EUFAR will invite representatives of end user industries to participate in the SAC and constitute a Technology Transfer Office to support both market pull and technology push driven innovation. Workshops will be organized like Innovation Conventions where EUFAR experts and SMEs will closely interact and develop partnerships to transfer airborne research instruments, methodologies and software into new products.


Belem statement areas
Ocean Observation
Time frame
2000 - 2013


Elisabeth Gérard